
submitted to IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 1

Neural Networks as Geometric Chaotic Maps
Ziwei Li, and Sai Ravela

Abstract—The interest in using neural networks as models of
nonlinear dynamics are rapidly expanding. Despite many prior
successes, the ability and mechanism of neural networks to learn
chaotic dynamics remain poorly understood. In this work, we
show that parsimonious neural networks trained only on few
data points suffice for the reconstruction of strange attractors,
extrapolation outside the boundaries of training data, and accu-
rate prediction of the local divergence rates on the attractor.
To understand the reason behind this good performance, we
decompose mappings in the neural network into a series of
geometric stretching and compression operations that indicate
topological mixing and, therefore, chaos. This indicates that after
training, the neural network has learned to become structurally
similar to the chaotic dynamical system on which it is trained.
To quantify the necessary complexity of the neural network, we
design simple neural networks by bounding the loss gradient
spectra using polynomial regression.

Index Terms—Neural networks, chaos, topological mixing,
nonlinear dynamical systems.

I. INTRODUCTION

CHAOTIC systems are ubiquitous [1], and their dynamics
are usually governed by nonlinear equations or maps.

However, finding the exact solutions is often impossible,
largely due to the nonlinearities and the characteristic wherein
two close-by trajectories exponentially diverge. Hence, ap-
proximate numerical solutions are usually sought for when
studying these dynamical systems. To quantify errors, uncer-
tainty, and predictability of the numerical solutions, modelers
simulate an ensemble of initial conditions using discretized
numerical models of the nonlinear governing equations. Doing
so, however, is challenging because the equations are nonlin-
ear, models are often high-dimensional, and the uncertainties
are non-Gaussian [2]. As a result, the search for simple-yet-
effective models for chaotic dynamics remains a crucial pursuit
in engineering and physical sciences.

The application of artificial neural networks to model
chaotic dynamics started at least 30 years ago [3]. Recently,
there has been a surge of interest in using NNs to emulate
chaotic systems [4]–[19], showing neural networks as promis-
ing dynamical models for such systems. We restrict term
“neural network” in our paper to be the traditional feedforward
neural network (hereby NN). We also focus our attention on
the classic Lorenz-63 (L63) system [20], a commonly used
chaotic system for both chaos and learning. Applying NN to
emulate the dynamics of the L63, our first observation is that
a single-hidden-layer NN equipped with only 4 neurons and
trained using 40 data points is able to reconstruct the strange
attractor. Another numerical experiment shows that NN can
extrapolate from partial knowledge of the attractor. Further

Ziwei Li and Sai Ravela are with the Department of Earth, Atmospheric,
and Planetary Sciences, Massachusetts Institute of Technology, Cambridge,
MA, 02139 (e-mail: ziweili@mit.edu, ravela@mit.edu).

comparison between the L63 and NN systems using finite-
time Lyapunov exponents also indicates that the neural model
becomes as chaotic as the L63 system in terms of predictabil-
ity. Although this success is consistent with previous efforts
using NN to emulate L63 (e.g., [13], [15]), it’s not clear how
chaos emerges in the neural system. The typical explanation is
to resort to the universal approximation theorem (UAP) [21]–
[24]. However, UAP is unsatisfactory here because it neither
explains the emergence of chaos in the network nor the
efficacy with which the attractor is reconstructed.

Here, we show that a geometric interpretation of the L63
system [25] explains the emergence of chaos in the neural
system. Similar to the geometric map of L63, the neural
map alternately rotate, stretch, and compress, which are the
defining characteristics of chaotic dynamics [26]. In fact, these
transformations are not particular to L63, but are very common
in chaotic systems, and we see them with more clarity on the
simpler discrete Hénon map and the corresponding NN map.
Possessing the geometric properties required by chaos theory
enables NNs to efficiently reconstruct strange attractors and
match the true systems’ predictability.

To the best of our knowledge, this explanation of the neural
learnability of chaos is new1. Due to the chaotic nature of
the system from which it learns, the predictive skill of NN
will always remain limited. Nevertheless, the NN matches the
predictability of the underlying system. Our results formally
reveal why NNs can emulate chaos, thereby justifying their
usage as reduced models of chaotic dynamics. For the practical
aspect of learning from a system that exhibits chaos but
whose exact mathematical formulas are unknown or difficult to
construct (i.e., reduced models of the atmosphere), our results
help to establish the use of NN as a viable solution to learn
from empirical data.

We further argue that the optimal learning system must
efficaciously emulate chaos to avoid overfitting. Realizing that
L63 is a polynomial system, we match the equilibrium norm of
the learning dynamics of NN training and that of polynomial
regression to provide a lower bound of the necessary number
of neurons for emulation of the L63 system [28], [29].

The remainder of this paper is organized as follows. Section
II describes related work. The experimental results on the
predictability of NN is shown in section III, followed by a
geometrical perspective in section IV. We then discuss the
bounds on the complexity of neural network in section V and
conclude in VI.

1The term “learnability” is used here in the sense of neural system’s fidelity
to specified properties of a dynamical system, e.g., the predictability of the
dynamical system quantified by its finite-time Lyapunov exponent. This is
different from, e.g., Valiant’s definition [27].



submitted to IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2

II. RELATED WORK

Prior works using neural networks to model chaotic dy-
namics can be categorized in two ways: designing primitive
neural networks that achieve chaotic behavior (bottom-up), and
learning from data generated by chaotic systems (top-down).

It is not surprising that low-dimensional neural networks
can exhibit chaotic behavior, as multiple previous results have
already shown. Models of 3 or 5 neurons with a truncated
polynomial activation function were found to show chaotic
behaviors [4], 3-D [6], [7] and 2-D [12] neural maps shows
period-doubling bifurcations in particular parameter ranges
to give onset of chaos, a 3-D cellular network can obtain
horseshoe map for some weight matrices [9], and a delayed
2-D network has chaotic dynamics for certain parameter
regimes [11].

Neural networks of different structures and complexities
were used to learn from data and reproduce the dynamics of
chaotic systems. Ref. [5] used multilayer perceptron models
in addition to linear models to propagate embedded data, and
ref. [10] established the equivalence between a class of neural
networks and Devaney’s definition of chaos. The dynamics
of the L63 system can be emulated with simple feedforward
NNs [13], [14], with tensor recurrent networks [15] and with
LSTM [17]. NNs similar to our setup were also thought of as
nonlinear ODE propagators [18], and were used in quantifying
Lyaponuv exponents in higher dimensional chaotic systems
[16], [19].

Our work bridges a gap between bottom-up simple theoret-
ical NN models and top-down complex operational models by
fitting a parsimonious feedforward NN onto the L63 system,
revealing its efficacy in modeling chaotic dynamics. A geomet-
ric perspective further reveals the structural similarity between
NN maps and chaotic maps, which makes NN a suitable and
potentially explainable model for data-driven problems.

III. NEURAL LORENZ-63 EMULATION

The L63 model was originally used to describe 2-D
Rayleigh-Bénard convection. The spectral components of the
dynamical fields are truncated to a set of ordinary differential
equations [20]:

Ẋ = σ(Y −X),

Ẏ = ρX − Y −XZ,
Ż = −βZ +XY,

(1)

where X and Y are the strengths of the streamfunction and
temperature modes, and Z represents the deviation of the ver-
tical temperature profile from linearity. Consistent with [20],
we set σ = 10, β = 8/3, and ρ = 28. The solutions of L63
are known to be dissipative (volume in phase space contracts
rapidly), and chaotic (sensitive to initial perturbations).

We define L63 as a discrete map from the current state of
the system xn = (X,Y, Z)T to the state of the next timestep
xn+1:

ΦL63(xn) 7→ xn+1. (2)

We choose the discrete form both for L63 and NN maps
because it provides a straightforward geometric connection
between L63 and the dynamics in the neural net, as we

shall discuss in section IV. Since the exact form of (2) for
L63 is unknown, the discrete map is obtained by numerically
integrating (1) and sampling at increment dt = 0.01.

A. Compact neural model

We use single-hidden-layer feedforward neural networks to
learn the dynamics of L63. The functional form of the NN is

ΦNN(xn) = W2g(W1xn + b1) + b2, (3)

in which the 3 × 1 input vector (xn) is left-multiplied by an
L×3 weight matrix (W1), and is added to an L×1 bias term
(b1), where L is the number of neurons. The resulting vector
is then element-wise “compressed” by a sigmoid function g(·),
which takes the form of tanh in our setup. Left-multiplication
by a 3×L matrix (W2) followed by addition of another bias
term (b2) finishes a mapping iteration.

We use Matlab function ode45 to numerically solve for
the discrete maps of L63 as training data. To obtain data
on the attractor, we randomly initialize 1000 trajectories from
region [−20, 20]×[−20, 20]×[0, 50] with uniform distribution.
Each trajectory is integrated for 2500 timesteps. We abandon
the first 2000 timesteps to remove the transient parts, which
are typically much shorter than 2000 steps. The remaining
500 timesteps of the 1000 trajectories are aggregated as pairs
(x,x′) that satisfy x′ = ΦL63(x) to form the training data
pool.

The locations of the training data (x) can be treated as a
representation of the L63 attractor (AL63), and each consec-
utive location pair provides information about the L63 flow.
We then randomly sample a specific number of location pairs
from the data pool to train NNs. Each NN is trained for 103

epochs with Bayesian regularization [30].

B. Comparisons of predictability

To compare the local divergence rates of NN and L63 and
quantify their similarities in predictability, we use the maxi-
mum finite-time Lyapunov exponent (FTLE) [31]. The FTLE
is computed from forward-propagating two nearby trajectories
that originate from the vicinity of the AL63 attractor. Formally,
it is defined as

λmax :=
1

Nt
ln

∣∣∣∣max
δx0

δxNt

∣∣∣∣
|δx0|

=
1

Nt
ln
√
σmax, (4)

where λmax denotes the maximum FTLE, δx0 is the initial
perturbation between two trajectories, and δxNt

denotes their
difference after Nt steps. The FTLE relates to the original
Lyapunov exponent when Nt → ∞ and δx0 → 0 [32]. We
calculate λmax using the largest eigenvalue (σmax) of JT

Nt
JNt

,
where JNt

is the Jacobian matrix evaluated using perturbations
around x0 (see S1 for details). The perturbation is 10−9 for
all 3 directions.

Our numerical experiment shows that NN can learn the
chaotic dynamics of L63 efficiently with a small number of
data and neurons. The quadratic prediction error is reported in
[14], and will not be the main focus of this paper. We instead
compare the short-term and long-term behaviors of the two



submitted to IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 3

systems. Specifically, we show that the dynamics represented
by NN has similar predictability compared to L63 as quantified
by FTLE, and NNs are able to extrapolate into regions that
are unknown in the training data.

Fig. 1. Two trajectories produced by L63 (blue) and the 4-neuron NN trained
on 40 data points sampled from the whole attractor (red-dashed). They start
from the same location on the L63 attractor (red dot), and are both 2000
timesteps long.

We analyze a 4-neuron network trained on 40 randomly
sampled data points. Its trained parameters are shown in table
I. Fig. 1 depicts two trajectories, one of which follows the L63
flow and the other follows the flow of the trained network.
They interlace with each other, tracing out the well-known
Lorenz attractor. NN trajectories starting from other locations
on the attractor follow the same behavior, and we have not
seen any trajectory that diverge from the strange attractor. The
close resemblance between the two structures indicates that
the dynamics of this 4-neuron NN trained on 40 data points is
similar to that of L63, confirming that NNs are able to learn
chaotic dynamics efficiently.

TABLE I
PARAMETERS OF THE 4-NEURON NN TRAINED WITH 40 DATA POINTS OF

L63. THE MATRICES (W1 , W2 , b1 , b2) ARE AS IN (3), WHILE S IS AS IN
(7)

Matrix Values

W1

0.0091 0.0008 −0.0004
0.0140 0.0063 −0.0016
0.0061 0.0023 −0.0049
0.0085 0.0036 0.0041

b1
T 0.1697 −0.6054 −0.0449 0.1773

W2

94.6004 8.7248 −8.0364 3.0535

−349.8684 11.3885 207.0634 227.4161

32.1244 93.9784 −214.6608 11.9787

b2
T −12.1241 34.2950 33.6097

diag(S) 2.7988 1.2134 0.6438 0.0000

To calculate FTLE, we generate points following the NN
flow using the same generation process as in section III-A.
The generated points in the phase space represents the NN
attractor (ANN). We then randomly initialize 2000 trajectories
on AL63. Every trajectory from AL63 is paired with another

trajectory that starts from the closest point on ANN, and in
each pair of trajectories, the former follows the L63 flow while
the latter follows the NN flow.

The FTLE of the trajectory pairs are compared under
different integration steps: Nt = 5, 50, 100, 500 (Fig. 2).
When Nt = 5, 50, NN accurately reproduces local divergence
rates over the whole attractor, showing that the short-term
predictability of the two systems agree with each other. As
Nt increases, the correspondence diverges (Nt = 100), and
converges again (Nt = 500) to the classical largest Lyapunov
exponent of L63 (roughly 0.91 as in [33]). The convergence of
FTLE under large timesteps implies similarity in the long-term
behavior of the two systems.

Fig. 2. One-to-one scatter plot of FTLE with L63 (x axis) and NN (y axis).
The NN used in this plot is the same as that in Fig. 1. The panels (from left
to right, top to bottom) correspond to increasing integration steps, Nt.

The agreement in FTLE generally improves under increas-
ing numbers of neurons and training data points (Fig. 3). This
trend is similar to the decreasing trend of the root-mean-square
prediction errors (not shown), and it is expected if we invoke
the bias and variance trade-off [34]: increased complexity in
learning models such as neural networks generally translates
into lower bias in prediction, provided that regularization
techniques prevent the learning algorithm from entering the
high-variance regime. Although it’s the prediction errors that
is being minimized during training, the errors in FTLE is also
reduced simultaneously.

Remarkably, NN can extrapolate from an incomplete train-
ing dataset sampled from part of the attractor. Similar to Fig. 1,
Fig. 4 shows a comparison of two trajectories predicted by
NN and L63. The NN in this case has 5 neurons, and is
trained on 100 data points sampled from the X > −5 part of
AL63, which amounts to knowing about 73% of the attractor
structure. The two trajectories in Fig. 4 originate from the
unknown region. They are close in the first 100 timesteps, and
then bifurcate onto the two branches of the attractor. Despite
starting from an unknown region, the NN trajectory still traces
out a well-behaved object that closely resembles the original
attractor in the extrapolated region of X ≤ −5. The one-to-one



submitted to IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 4

Fig. 3. The RMS error in FTLE of neural networks for each neuron and
number-of-data configuration. The FTLE is calculated with Nt = 50 and
averaged over 2000 trajectories that are randomly initialized on the attractor.
The red dot represents the example configuration used in Figs. 1 and 2. The
red surface is located at z = 0.04.

correspondence of FTLEs between L63 and the NN trained on
the incomplete dataset is similar to Fig. 2 (see Fig. S2).

Fig. 4. Similar to Fig. 1, but the red-dashed trajectory is produced by a 5-
neuron NN trained on 100 data points sampled from the X > −5 part of
the attractor. The region to the right of the grey partition is the training data
range, and the region to the left is unknown to the NN.

IV. A GEOMETRIC PERSPECTIVE OF THE NN FLOW

We showed from the previous section that the neural
learnability on the L63 dynamics is very good. However,
the theoretical approach to understand this learnability is
unknown. Although the UAP states that mapping ΦL63 can be
approximated by NN arbitrarily well, it does not explain the
NN’s efficacy in reconstructing the strange attractor with few
neurons, nor its skill of extrapolation. Inspired by the exact
mathematical correspondence between the geometric Lorenz
flow and L63 [25], [35] (see section S2 for details), we give
our geometric understanding of the NN flow.

A. Mathematical formulation

The dynamics of NN (3) can be seen as a mapping in a
multi-dimensional Riemann space (this interpretation was also
used in classification problems [36]). In the discrete map of
the simple 4-neuron network discussed above, the input vector
x in the 3-D phase space is mapped into a 4-D neuron space,
and then mapped back to the phase space. Let an Nt-step
trajectory be LNt

0 = {x0,x1, ...,xNt}, Nt ≥ 2. From step n
to n+1 (n ∈ {0, 1, ..., Nt−1}), there exists a 4-D intermediate
vector y in the neuron space:

yn+1 = g(W1xn + b1), (n = 0, 1, ..., Nt − 1). (5)

We refer to y as the neuron vector. The recurrence relation of
y is then:

yn+1 = g(W∗yn + b∗), (n = 1, 2, ..., Nt − 1). (6)

where W∗ = W1W2 is a 4-by-4 matrix, and b∗ = W1b2 +
b1 is a 4-by-1 vector. W∗ can be decomposed as W∗ =
USVT using singular-value decomposition. U and V are both
4-D orthonormal matrices, and S is a diagonal matrix of rank
3. Eq. (6) can be written more explicitly as

yn+1 = g(USVTyn + b∗), (7)

which we call the neuron map. Equation (7) encodes the entire
dynamics learnt by NN, since it is different from (3) by a
homomorphism, i.e., (5). Therefore, understanding the neuron
map is equivalent to understanding the dynamics of NN.

The neuron map has 4 sub-steps: rotation, stretch, rotation,
and compression. Rotation in this paper takes the generalized
sense of orthogonal transformation, and they are carried out
by orthonormal matrices VT and U in the neuron map. Since
the sigmoid function only has a compressing effect due to its
gradient being smaller than or equal to 1, S must have at least
one diagonal element larger than 1 in order to obtain one or
more unstable directions as required by chaos [37]. For the 4-
neuron NN at question, S applies expansion in two dimensions
as two of its diagonal elements are greater than 1 (table I).

Through the growth of perturbations, the effects of com-
pression and expansion exerted by NN are seen more clearly.
Let δy be the difference between two initial points near y, we
know from (6) that its value at the next timestep, δy′, is

δy′ = g′ (W∗y + b∗)�W∗δy, (8)

where we neglected second- and higher-order terms,
and � denotes element-wise product. We set Gjj =

g′
(∑L

i=1W
∗
jiyi + b∗j

)
, then g′ (W∗yn + b∗) � W∗δy =

GW∗δy, where G = diag{G11, G22, ...}. The squared error
is then

|δy′|2 = δyT(W∗)TG2W∗δy, (9)

where (W∗)TG2W∗ is symmetric positive semi-definite.
From (9), it’s clear that the singular values of W∗ that are
larger than 1 will expand the perturbation since G compresses
the perturbation as g′(x) ∈ (0, 1], ∀x ∈ R. With the
information of y, G controls the degrees of compression in
each direction of the 4-D neuron space. The orientations of



submitted to IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 5

compression and expansion can be in different directions as
they are controled by U and V.

The above framework can be easily generalized into an N -
hidden-layer network. The dynamics of the neural vector will
be ambiguous as there are multiple layers of hidden neurons,
hence we apply the same treatment to perturbations in the
phase space. For a perturbation of δx around x, its squared
length at the next timestep is

|δx′|2 = |WN+1GNWN ...G1W1δx|2, (10)

where Gi = diag{g′(Wiyi−1 + bi)}, yi−1 is the neuron
vector of the ith layer for i > 1, and y0 = x. The weight
and gradient matrices then consecutively parameterize multiple
stretching and compressing operations in a single NN map.

B. Topological mixing in NN with the Hénon map

The stretch and compression sub-steps in neuron maps
are frequently thought of as the typical way to give rise
to topological mixing and chaos (although strictly speaking,
it is neither the necessary nor the sufficient condition [38]).
The ability to obtain these geometric operations makes NN
very good at approximating discrete chaotic mappings. For
example, a 2-neuron NN can be trained to faithfully recreate
the Hénon map. The Hénon map is a discrete 2-D chaotic map
designed such that the phase space is stretched in one direction
and compressed in the other [39]. The map can be decomposed
into three steps: an area-preserving stretch, a compression, and
a reflection along x(1) = x(2):

(x
(1)
1 , x

(2)
1 ) = (x

(1)
0 , 1− a(x

(1)
0 )2 + x

(2)
0 ), (stretch)

(x
(1)
2 , x

(2)
2 ) = (bx

(1)
1 , x

(2)
1 ), (compression)

(x
(1)
3 , x

(2)
3 ) = (x

(2)
2 , x

(1)
2 ), (reflection)

(11)
where we choose a = 1.4, b = 0.3. We follow the same
training procedure as for L63, and train this 2-neuron network
with only 20 randomly-sampled data points. The reconstructed
strange attractor is virtually indistinguishable from the original
Hénon attractor (Fig. S3). Table II shows the parameters of this
network after training.

TABLE II
PARAMETERS OF THE 2-NEURON NN TRAINED WITH 20 DATA POINTS OF

THE HÉNON MAP.

Matrix Values Bias Values

W1
0.0960 0.0043
−0.0866 0.0041

bT
1 0.8688, 0.9188

W2
220.7978 263.0327

3.0292 −3.6975 bT
2 −344.5050, 0.5593

With this simple example, we show how the extension and
compression take place in the neuron map. Let H be a group
of points that form a straight line in the phase space. H is
initialized into the neuron space by (5) as H0, shown as the
blue dots in Fig. 5. Then H0 undergoes a series of geometric
mapping following the NN flow. The location vector of each
point in H0 is left-multiplied by VT and becomes H1. VT

is a rotational matrix of 130.0◦ counter-clockwise. S linearly

expands H1 in y(1) and contracts it in y(2), yielding H2. H2

is then reflected by U along a line with an angle of 69.0◦

relative to line y(2) = 0, giving H3. H3 is transformed into
H4 from bias by b∗, and element-wise compression by g(·).
H4 initiates the next step of the neuron mapping. Compared
with H0, H4 extends along the principle direction of the point
manifold and wraps around the lower-right tip of H0, which
is effectively a horseshoe transformation.

V. LOWER-BOUNDING THE NUMBER OF NEURONS

The number of neurons that are necessary to reproduce
the strange attractors of the Lorenz and Hénon maps are
surprisingly small compared to previous theoretical results.
Since the Euler-forward scheme of (1) is a 3-D (n = 3)
polynomial with a degree of at most d = 2, we can use
previous theoretical results on learning polynomials with
NNs [40], [41] to establish lower bounds on the necessary
number of neurons. In effect, we assume that the dynamics
are characterized by polynomials but the learning system
doesn’t know the exact coefficients for each term. The number
of neurons (L) for learning a polynomial with root-mean-
square error target ε is bounded by L = Ω(n6d/ε3) accord-
ing to [41]. This is a rather coarse estimate as more than
5 × 105 nodes are needed when ε ∼ 1 (for Hénon map,
this estimate is 4 × 103). On the other hand, matching the
equilibrium norms of neural and polynomial regression [29]
gives a more reasonable estimate: a full polynomial (n, d)
needs L =

(
n+d
d

)
− (n + 1) ∼ 6 hidden nodes [28], [29]

for an asymptotic match, and the standard network (3) has
an asymptotic bound of L ∼ n

2n+1

[(
n+d
d

)
− 1
]
∼ 5 neurons.

Note that this match in learning dynamics is just an order-of-
magnitude estimation and does not provide an error guarantee.

A more direct but less rigorous bound can be obtained
via a Taylor-expansion of the sigmoid function to the third
order: tanh(x) = x − x3/3 + O(x5), which allows (3) to
be modeled as a polynomial of degree 3 (NN polynomial).
We further require all coefficients of the NN polynomial to
be equal to those in (1). Then for an NN with L hidden
nodes, biases, and n-dimensional input/output, a total of
2nL + n + L parameters should satisfy 3

(
n+3
3

)
constraining

equations. The parameters in NN should be under-determined
for a good fit, i.e., 2nL + n + L ≥ 3

(
n+3
3

)
. Hence, at

least L = d(3
(
n+3
3

)
− n)/(2n + 1)e = 9 hidden nodes are

needed. To obtain an error estimate, we substitute table I
into the NN polynomial to obtain ΦNN−poly, and calculate
the expected error over data sampled from the L63 attractor:
ε2 = 〈(ΦNN−poly−ΦL63)2〉AL63 . 5000 random samples give a
normalized error of ε ∼ 0.14. Therefore, this estimation gives
a lower bound of 9 neurons at the error level of at most 0.14.

These theoretical lower-bounds give an estimate on the
necessary complexity of neural networks needed to model
polynomial systems. However, they overlook the geometric
nature of the two chaotic systems discussed above, despite
the fact that both of the systems are polynomials. This might
be the reason why the lower-bounds are still equal or larger
than the necessary number of neurons needed to reconstruct
the strange attractors. The similarity between NN and chaotic



submitted to IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 6

H0 H1 H2 H3 H4&H0

(2) expansion by S

(3) reflection by     U

(4) bias by 
     and compression by

b⇤

g(·)
<latexit sha1_base64="LV4YcFOcojap3BT6BSXOasQ8eR8=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBahXkoigh6LXjxWsB/QhrLZbNqlm03cnQil9E948aCIV/+ON/+N2zYHbX0w8Hhvhpl5QSqFQdf9dgpr6xubW8Xt0s7u3v5B+fCoZZJMM95kiUx0J6CGS6F4EwVK3kk1p3EgeTsY3c789hPXRiTqAccp92M6UCISjKKVOoNqj4UJnvfLFbfmzkFWiZeTCuRo9MtfvTBhWcwVMkmN6Xpuiv6EahRM8mmplxmeUjaiA961VNGYG38yv3dKzqwSkijRthSSufp7YkJjY8ZxYDtjikOz7M3E/7xuhtG1PxEqzZArtlgUZZJgQmbPk1BozlCOLaFMC3srYUOqKUMbUcmG4C2/vEpaFzXPrXn3l5X6TR5HEU7gFKrgwRXU4Q4a0AQGEp7hFd6cR+fFeXc+Fq0FJ585hj9wPn8AZJmPiA==</latexit><latexit sha1_base64="LV4YcFOcojap3BT6BSXOasQ8eR8=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBahXkoigh6LXjxWsB/QhrLZbNqlm03cnQil9E948aCIV/+ON/+N2zYHbX0w8Hhvhpl5QSqFQdf9dgpr6xubW8Xt0s7u3v5B+fCoZZJMM95kiUx0J6CGS6F4EwVK3kk1p3EgeTsY3c789hPXRiTqAccp92M6UCISjKKVOoNqj4UJnvfLFbfmzkFWiZeTCuRo9MtfvTBhWcwVMkmN6Xpuiv6EahRM8mmplxmeUjaiA961VNGYG38yv3dKzqwSkijRthSSufp7YkJjY8ZxYDtjikOz7M3E/7xuhtG1PxEqzZArtlgUZZJgQmbPk1BozlCOLaFMC3srYUOqKUMbUcmG4C2/vEpaFzXPrXn3l5X6TR5HEU7gFKrgwRXU4Q4a0AQGEp7hFd6cR+fFeXc+Fq0FJ585hj9wPn8AZJmPiA==</latexit><latexit sha1_base64="LV4YcFOcojap3BT6BSXOasQ8eR8=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBahXkoigh6LXjxWsB/QhrLZbNqlm03cnQil9E948aCIV/+ON/+N2zYHbX0w8Hhvhpl5QSqFQdf9dgpr6xubW8Xt0s7u3v5B+fCoZZJMM95kiUx0J6CGS6F4EwVK3kk1p3EgeTsY3c789hPXRiTqAccp92M6UCISjKKVOoNqj4UJnvfLFbfmzkFWiZeTCuRo9MtfvTBhWcwVMkmN6Xpuiv6EahRM8mmplxmeUjaiA961VNGYG38yv3dKzqwSkijRthSSufp7YkJjY8ZxYDtjikOz7M3E/7xuhtG1PxEqzZArtlgUZZJgQmbPk1BozlCOLaFMC3srYUOqKUMbUcmG4C2/vEpaFzXPrXn3l5X6TR5HEU7gFKrgwRXU4Q4a0AQGEp7hFd6cR+fFeXc+Fq0FJ585hj9wPn8AZJmPiA==</latexit><latexit sha1_base64="LV4YcFOcojap3BT6BSXOasQ8eR8=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBahXkoigh6LXjxWsB/QhrLZbNqlm03cnQil9E948aCIV/+ON/+N2zYHbX0w8Hhvhpl5QSqFQdf9dgpr6xubW8Xt0s7u3v5B+fCoZZJMM95kiUx0J6CGS6F4EwVK3kk1p3EgeTsY3c789hPXRiTqAccp92M6UCISjKKVOoNqj4UJnvfLFbfmzkFWiZeTCuRo9MtfvTBhWcwVMkmN6Xpuiv6EahRM8mmplxmeUjaiA961VNGYG38yv3dKzqwSkijRthSSufp7YkJjY8ZxYDtjikOz7M3E/7xuhtG1PxEqzZArtlgUZZJgQmbPk1BozlCOLaFMC3srYUOqKUMbUcmG4C2/vEpaFzXPrXn3l5X6TR5HEU7gFKrgwRXU4Q4a0AQGEp7hFd6cR+fFeXc+Fq0FJ585hj9wPn8AZJmPiA==</latexit>

(1) rotation by VT

Fig. 5. Schematic of an iteration of the neuron map described by the 2-neuron NN trained on the Hénon map. The positions of points in the neuron space at
each sub-step is shown in the upper figure, and the detailed structure is sketched in the lower panels. H0 (blue) is rotated counter-clockwise to H1 (orange),
stretched and contracted to H2 (yellow), reflected to H3 (purple), and then compressed to H4 (green) which occupies the same region as H0. The first step
is magnified in the inset.

maps in terms of the stretching and compression operations
should therefore be stressed to explain NN’s surprising efficacy
in modeling chaotic dynamics.

VI. CONCLUSION AND DISCUSSION

We have shown that single-hidden layer feedforward neural
networks are able to reconstruct the chaotic dynamics of
the Lorenz-63 map and Hénon map with surprising efficacy.
This success in modeling chaotic dynamics is associated with
neural network’s structural similarity to the chaotic maps in
terms of the stretching and compression operations. Our work
suggests that NN may be a good candidate to learn from
data and represent a broad range of chaotic dynamics with
good generalization skills. With the flow-like dynamics and
gradient-descent algorithm, it may serve as a non-parametric
model for chaotic systems without explicit expressions. Neural
networks may be especially useful in data-driven problems
with its efficacy in terms of the necessary complexity and
number of data points that are needed to model chaotic
dynamics. The explainability from the geometric viewpoint
might even warrant neural networks as proper mathematical
models for these systems.

Conversely, one could also consider neural networks as
a more generalized class of chaotic systems. Apart from
compression and expansion operations that are necessary for
chaos, the higher-dimensional rotations are also important in
creating the flow-like dynamics in modeling L63. We may
further posit that the neural networks could be a unifying

formulation for dissipative chaotic dynamics as it at least
reproduces the Hénon map and the Lorenz map under the
same mathematical framework.

On the other hand, the compression operation imposed by
the sigmoid function makes NN of the form of (3) preferable
to emulate low-dimensional dissipative systems; its ability to
model chaotic Hamiltonian dynamics and systems of much
higher dimensionality is yet to be tested. It’s also interesting
to test whether the choice of activation function, g(·), results
in performance changes. For example, it may not be possible
to model systems like L63 using only ReLU. Because ReLU
is piece-wise linear in the phase space, it cannot obtain the
nonlinear folding behavior. Indeed, linear models have been
found to fail dramatically when modeling chaotic dynam-
ics [8]. More work is also needed, possibly with the aid of
Riemann geometry, to fundamentally understand the geometric
operations in the high-dimensional neuron space.

ACKNOWLEDGMENT

Supports from ONR grant N00014-19-1-2273, the MIT
Environmental Solutions Initiative, the John S. and Maryann
Montrym Fund, and the MIT Lincoln Laboratory are gratefully
acknowledged.

REFERENCES

[1] S. H. Strogatz, Nonlinear Dynamics and Chaos: With Applications to
Physics, Biology, Chemistry, and Engineering, 2nd ed. Boca Raton,
FL: CRC Press, 2015.



submitted to IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 7

[2] S. Ravela, Tractable Non-Gaussian Representations in Dynamic Data
Driven Coherent Fluid Mapping. Cham: Springer International Pub-
lishing, 2018, pp. 29–46.

[3] K. Aihara1, T. Takabe, and M. Toyoda, “Chaotic neural networks,”
Physics Letters A, vol. 144, pp. 333–340, 1990.

[4] A. Garliauskas, “Neural network chaos analysis,” Nonlinear Analysis:
Modelling and Control, vol. 3, pp. 43–57, 1998.

[5] R. Bakker, J. C. Schouten, C. Lee Giles, F. Takens, and C. M.
Van den Bleek, “Learning chaotic attractors by neural networks,” Neural
Computation, vol. 12, pp. 2355–2383, 2000.

[6] A. Das, A. Roy, and P. Das, “Chaos in a three dimensional neural
network,” Applied Mathematical Modelling, vol. 24, no. 7, pp. 511 –
522, 2000.

[7] A. Das, P. Das, and A. B. Roy, “Chaos in a three-dimensional general
model of neural network,” International Journal of Bifurcation and
Chaos, vol. 12, pp. 2271–2281, 2002.

[8] S. V. Dudul, “Prediction of a Lorenz chaotic attractor using two-layer
perceptron neural network,” Applied Soft Computing, vol. 5, pp. 333–
355, 2005.

[9] X.-S. Yang and Q. Li, “Horseshoe chaos in cellular neural networks,”
International Journal of Bifurcation and Chaos, vol. 16, pp. 157–161,
2006.

[10] J. M. Bahi, J. F. Couchot, C. Guyeux, and M. Salomon, “Neural
networks and chaos: Construction, evaluation of chaotic networks, and
prediction of chaos with multilayer feedforward networks,” Chaos,
vol. 22, p. 013122, 2012.

[11] Z. Song and J. Xu, “Bifurcation and chaos analysis for a delayed two-
neural network with a variation slope ratio in the activation function,”
International Journal of Bifurcation and Chaos, vol. 22, p. 1250105,
2012.

[12] A. Zerroug, L. Terrissa, and A. Faure, “Chaotic dynamical behavior of
recurrent neural network,” Annual Review of Chaos Theory, Bifurcations
and Dynamical Systems, vol. 4, pp. 55–66, 2013.

[13] L. Zhang, “Artificial neural networks model design of Lorenz chaotic
system for EEG pattern recognition and prediction,” in 2017 IEEE Life
Sciences Conference, 2017, pp. 39–42.

[14] ——, “Artificial neural network model design and topology analysis for
FPGA implementation of Lorenz chaotic generator,” in 2017 IEEE 30th
Canadian Conference on Electrical and Computer Engineering, 2017,
pp. 30–33.

[15] R. Yu, S. Zheng, and Y. Liu, “Learning chaotic dynamics using tensor
recurrent neural networks,” in Proceedings of the ICML 17 Workshop
on Deep Structured Prediction, 2017.

[16] J. Pathak, Z. Lu, B. R. Hunt, M. Girvan, and E. Ott, “Using machine
learning to replicate chaotic attractors and calculate Lyapunov exponents
from data,” Chaos, vol. 27, p. 121102, 2017.

[17] M. Madondo and T. Gibbons, “Learning and modeling chaos using
LSTM recurrent neural networks,” in Proceedings of the Midwest
Instruction and Computing Symposium, 2018.

[18] R. T. Chen, Y. Rubanova, J. Bettencourt, and D. Duvenaud, “Neural
ordinary differential equations,” in 32nd Conference on Neural Infor-
mation Processing Systems, 2018.

[19] J. Pathak, B. Hunt, M. Girvan, Z. Lu, and E. Ott, “Model-free prediction
of large spatiotemporally chaotic systems from data: a reservoir com-
puting approach,” Physical Review Letters, vol. 120, p. 024102, 2018.

[20] E. N. Lorenz, “Deterministic nonperiodic flow,” Journal of the Atmo-
spheric Sciences, vol. 20, pp. 130–141, 1963.

[21] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward
networks are universal approximators,” Neural Networks, vol. 2, pp.
359–366, 1989.

[22] K. Hornik, “Approximation capabilities of multilayer feedforward net-
works,” Neural Networks, vol. 4, pp. 251–257, 1991.

[23] D. R. Seidl and R. D. Lorenz, “A structure by which a recurrent neural
network can approximate a nonlinear dynamic system,” in Proceedings
of the International Joint Conference on Neural Networks 1991, vol. 2.
IEEE, 1991, pp. 709–714.

[24] K. Funahashi and Y. Nakamura, “Approximation of dynamical systems
by continuous time recurrent neural networks,” Neural Networks, vol. 6,
pp. 801–806, 1993.

[25] W. Tucker, “A rigorous ODE solver and smale’s 14th problem,” Foun-
dations of Computational Mathematics, vol. 2, pp. 53–117, 2002.

[26] P. Berge, Y. Pomeau, and C. Vidal, Order within chaos. Wiley, 1987.
[27] L. G. Valiant, “A theory of the learnable,” Commun. ACM, vol. 27, pp.

1134–1142, 1984.
[28] M. Trautner and S. Ravela, “Neural integration of continuous

dynamics,” arXiv, no. 1911.10309, 2019. [Online]. Available: https:
//arxiv.org/pdf/1911.10309.pdf

[29] S. Ravela, Z. Li, M. Trautner, and S. Reilly, “Spectral matching for
theory-driven neural computation,” Preprint, 2019.

[30] F. Dan Foresee and M. T. Hagan, “Gauss-Newton approximation to
bayesian learning,” in Proceedings of International Conference on
Neural Networks, 1997.

[31] G. Haller, “Distinguished material surfaces and coherent structures in
three-dimensional fluid flows,” Physica D: Nonlinear Phenomena, vol.
149, pp. 248–277, 2001.

[32] L. Barreira and Y. Pesin, “Lectures on Lyapunov exponents and smooth
ergodic theory,” in University Lecture Series. Providence, RI: American
Mathematical Society, 2002, vol. 23, p. 151.

[33] D. Viswanath, “Lyapunov exponents from random fibonacci sequences
to the Lorenz equations,” Ph.D. dissertation, Cornell University, Ithaca,
NY, USA, 1998.

[34] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cambridge,
MA: MIT Press, 2016.

[35] J. Guckenheimer and R. F. Williams, “Structural stability of Lorenz
attractors,” Publ. Math. IHES, vol. 50, pp. 307–320, 1979.

[36] M. Hauser and A. Ray, “Principles of Riemannian geometry in neural
networks,” in 31st Conference on Neural Information Processing Sys-
tems, 2017, p. 10.

[37] R. L. Devaney, An introduction to chaotic dynamical systems, 2nd ed.
Reading, MA: Addison-Wesley, 1989.

[38] D. Ruelle, “What is a strange attractor?” Notices of the AMS, vol. 53,
pp. 764–765, 2006.

[39] M. Hénon, “A two-dimensional mapping with a strange attractor,”
Communications in Mathematical Physics, vol. 50, pp. 69–77, 1976.

[40] A. R. Barron, “Universal approximation bounds for superpositions of a
sigmoidal function,” IEEE Transactions on Information Theory, vol. 39,
pp. 930–945, 1993.

[41] A. Andoni, R. Panigrahy, G. Valiant, and L. Zhang, “Learning Polyno-
mials with Neural Networks,” in Proceedings of the 31st International
Conference on International Conference on Machine Learning, 2014.

Ziwei Li Ziwei Li is a PhD candidate in the Depart-
ment of Earth, Atmospheric and Planetary Sciences
at the Massachusetts Institute of Technology. He
is interested in discovering the dynamics of the
atmosphere using simple physical and stochastic
models. Ziwei Li received his Bachelor of Science
degree in 2016 from Peking University.

Sai Ravela Sai Ravela directs the Earth Signals and
Systems Group (ESSG) in the Earth, Atmospheric
and Planetary Sciences at the Massachusetts Institute
of Technology. His primary research interests are in
dynamic data-driven stochastic systems theory and
machine intelligence methodology with application
to Earth, Atmospheric and Planetary Sciences. Rav-
ela received a PhD in Computer Science in 2003
from the University of Massachusetts at Amherst.

https://arxiv.org/pdf/1911.10309.pdf
https://arxiv.org/pdf/1911.10309.pdf

	Introduction
	Related work
	Neural Lorenz-63 emulation
	Compact neural model
	Comparisons of predictability

	A geometric perspective of the NN flow
	Mathematical formulation
	Topological mixing in NN with the Hénon map

	Lower-bounding the number of neurons
	Conclusion and discussion
	References
	Biographies
	Ziwei Li
	Sai Ravela


